

4T MOTORCYCLE OILS AND PCMO'S HAVE DIFFERENT NEEDS

	Motorcycles	Passenger Cars
Friction	High friction for clutch performance	Low friction for fuel economy
Phosphorus	Phosphorus containing for gear protection	Lower Phosphorus for catalytic converter compatibility
Oil Volume	1.0 to 2.5 litres	3.5 to 4.0 litres
Engine Speed	8000 rpm	4000 rpm
Power Output	200hp per litre	100hp per litre
Shear Resistance	Higher requirement for gearbox protection	Stay in Grade only

SPECIAL REQUIREMENTS FOR MOTORBIKE APPLICATION

Polar head

Oil soluble tai (oleophilic)

Oil Soluble Tail

• High temperature of operation

Selection of Anti Oxidant system

Clutch torque capacity and clutch slippage

modifier

Dispersant forms micelle oy enveloping soot particle

Additive

Polar Head

soot

particle

Specific balance of Detergent and friction

Gear pitting protection Balance of anti wear

Motor Cycle Oil are not Exposed to the same constrain than Passenger Car motor Oil.

EP

The Design is different

www.ravenol.de

AW

MOTORCYCLE DIFFERENTIATED PERFORMANCE NEEDS

CLUTCH PERFORMANCE

• Acceptable wet clutch friction performance.

 Sustained load carrying capacity throughout the oil drain interval

protection

OXIDATION

• Robust performance needed to cope with higher temperatures

DEPOSIT CONTROL

 Reliable protection of narrow oil-ways against clogging and oil starvation

LUBRICITY

 Superior metal on metal lubricity contributes to lowering bulk oil temperatures.

• Counteracts tendency for higher temperatures resulting from

- Lower Oil Volumes
- Inefficiencies of air cooled engines

MOTORBIKE MAIN LUBRICATION FUNCTION

Motorcycle oils depend on 3 lubrication functions

Requires a balanced formulation approach

CRITICAL AREA OF LUBRICATION IN MOTOR DESIGN

Critical Areas of Lubrication	Focus Areas
Zone 1: Valve train area	Wear, friction, rust, deposits and sludge
Zone 2; Piston and cylinder zone	Deposits, ring stick, ring and cylinder wear, bore polish, rust or corrosion
Zone 3: Bearings	Abrasive and corrosive wear, oil film thickness retention
Zone 4: Sump and oil ways	Emulsion, sludge, oil oxidation, filter blocking, shear

WHERE AND WHAT KIND OF PROBLEMS COULD APPEAR

Valve train -

Intake deposits -

Temperatures

200°C to 350°C 100°C to 180°C 30°C to 100°C

Bearing wear

Viscosity increase -

MOTORCYCLE- TRANSMISSION PERFORMANCE

- Wet Motorcycles transmission sumps use the engine oil to immerse the clutch hub and also lubricate the gears
- Wet Clutches need high friction properties for good clutch capacity and to ensure there is no clutch slippage during power transmission.
- The JASO T 903- 2016 specification category MA2 ensures good clutch capacity.
- An optimized friction brings better Clutch capacity and clutch slippage then less power losses

MOTORCYCLE- GEAR PERFOMANCE

- Low Viscosity SAE XW-30 engine oils have increased propensity to cause gear pitting at elevated (> 130°C) operating temperatures
- Motorcycle oils have to be designed for gear pitting protection, and lower clutch hub wear
- Automotive lubricant are more focused on wear.
- Accurate Gear pitting protection brings better transmission performance.

WHY IS MCO EXPOSED TO GREATER OXIDATION

- Motorcycles on average have 1.5 times the power output per liter of cubic capacity than a comparable car engine.
- Given that the machine has to deliver higher power from an engine with smaller cubic capacity and low peak combustion pressures, the only way is by operating at high engine RPMs.
- Higher power output on a smaller quantity of oil due to smaller sump capacities increases oil stress factor
- Higher turbulence rates due to higher **RPMs**, increases oxidation tendency.

• RAVENOL RACING 4T 10W-40 API SN, JASO MA 2

• REPSOL RACING 4T API SN, JASO MA 2

• MOTUL 300V 4T FACTORY LINE ROAD RACING API, JASO

COMPARISON BETWEEN THE KNOWN MCO OIL BRANDS AND RAVENOL

	Specs	Motul	Repsol	RAVENOL RACING 4T 10W-40	ity at 10°C Test 1
/100	12,5-16,3	13,43	13,98	15,23	Bosh
CCS (-25°C)	max 7000	6300	5770	6210	zed V after
/IRV (-30°C)	max 60000	12700	15900	11700	
ITHS (150°C)	min 3,5	4,36	4	4,87	
JOACK	max 20	8,2	6	4,6	Number of cycles
lash Point	N.A.	228	224	242	
Pour Point	N.A.	-45	-36	-60	
Sulfated Ash	max 1,2	1,01	0,72	0,85	V100 norm
our-Ball method anti-wear properties	N.A.	0,48	0,5	0,34	
Determination of the shear stability of olymer-containing oils using a diesel njector nozzle (30 cycles)	min 12	13,31	13,85	14,98	Sulfated Ash
SI 30 cycles		0,89	0,93	1,64	
Determination of the shear stability of oolymer-containing oils using a diesel njector nozzle (250 cycles)	N.A.	13,24	12,96	14,72	PP norm
SSI 250 cycles		1,41	7,30	3,35	noack norm HTHS norm
Dxidation Induction Time OIT temperature 210 °C	N.A.	N.A.	31	40	

• RAVENOL RACING 4T 10W-60 API SN, JASO MA 2

• MOTOREX POWER SYNT 4T API SJ, JASO MA 2-Freigabe, KTM LC4 2007+

COMPARISON BETWEEN THE KNOWN MCO OIL BRANDS AND RAVENOL

	Specs	Motorex Cross Power 4T 10W-60	RAVENOL RACING 4T 10W-60	sity at 100°C h Test l
V100	21,9-26,1	24,3	23,46	
CCS (-25°C)	max 7000	4420	6270	afte
/IRV (-30°C)	max 60000	20760	19700	
-ITHS (150°C)	min 3,7	5	5,4	2 0,9 <u> </u>
IOACK	max 20	5,9	5,4	
lash Point	N.A.	244	246	
Pour Point	N.A.	-42	-57	
Sulfated Ash	max 1,2	1,28	0,84	
our-Ball method anti-wear properties	N.A.	0,46	0,37	Sulfated Ash CCS (–25°C) no
Determination of the shear stability of oolymer-containing oils using a diesel njector nozzle (30 cycles)	min 21,9	23,41	23,16	
Determination of the shear stability of olymer-containing oils using a diesel	N.A.	22,68	22,96	PP norm

• RAVENOL RACING 4T 15W-50 API SN, JASO MA 2

• MOTOREX CROSS POWER 4T API SN, JASO MA 2-Freigabe

COMPARISON BETWEEN THE KNOWN MCO OIL BRANDS AND RAVENOL

	Specs	Motorex TOP SPEED 4T 15W-50	RAVENOL RACING 4T 15W-50	Osity at 100°C ih Test
V100	16,3-21,9	17,74	18,12	
CCS (-25°C)	max 7000	4410	4950	alized
MRV (-30°C)	max 60000	17800	9100	
HTHS (150°C)	min 3,7	4,83	5,4	- 0,8 - 100 150 200 250 3
NOACK	max 15	6,4	4,7	BAVENOL Bacing Premium Line 15W-50 Motorex TOP SPEED 4T 15W-50
Flash Point	N.A.	248	248	
Pour Point	N.A.	-36	-57	
Sulfated Ash	max 1,2	0,7	0,84	- V100 norm
Four-Ball method anti-wear properties	N.A.	0,42	0,34	Sulfated Ash
Determination of the shear stability of polymer-containing oils using a diesel injector nozzle (30 cycles)	min 15	15,36	17,93	
Determination of the shear stability of polymer-containing oils using a diesel injector nozzle (250 cycles)	N.A.	15,33	17,63	PP norm MRV (-30°C) norm
				noack norm HTHS norm
				RAVENOL Racing Premium Line 15W-50 Motorex TOP SPEED 4T 15W-50

EXTENDED DRAIN INTERVAL

- Oxidation and thermal stability are among the most important advantages that synthetics bring to the table. Better base oil stability means better additive stability and longer life. High stability is the key of the premiumquality lubricants with longer drain intervals.
- Generally, **oxidation** will reduce the service life of a lubricant by half, for every 10°C increase in fluid temperature above 60°C.
- Generally, the drain interval can be extended by 30% when changing base oils from Group II to PAO.

Probe RAVENOL RACING 4-T 10W-40 0002-000680

Prolonged life of the Ravenol product due to better oxidation stability.

Probe Repsol MOTO Racing FS 10W-40 0030212895

NEW LINE: MOTOBIKE 4-T

Art. Nr.: 1171106-01

RAVENOL RACING 4-T 10W-50

Art. Nr.: 1171107-01

RAVENOL RACING 4-T 10W-60

Ó

Art. Nr.: 1171108-01

RAVENOL RACING 4-T 15W-50

0

Art. Nr.: 1171109-01

BETTER ENGINE WEAR PROTECTION

EXTENDED OIL CHANGE INTERVALS

FASTER ACCELERATION

No. of the party of the

